This not the truth this is what Current theory suggests or a a good guess

The big bang theory

What... is the origin.
initiated the creation
came before
lies outside
the Universe. The big bang is not the answer but is a good scientific model ...

It is an attempt to explain how the universe developed from a incredibly small, dense state into what it is today. It describes the expansion of the universe (space, time, energy and matter).

Singularity: All of the matter, energy and space was compressed to an area of zero volume and infinite density. All four fundamental forces ( the gravitational, electromagnetic, strong and weak forces) were unified as a single force (Grand Unified Theory).
Quantum age:
Planck epoch: It lasted 10-43seconds. It span 10-33centimetres. It was extremely dense and extremely hot (1032degrees kelvin). Matter and energy were inseparable.
Inflationary period: At approximately 10-37 seconds.Expansion at a rate faster than the speed of light. Universe grew exponentially
Quark-gluon plasma
Baryogenesis: At around 10-35 seconds. Creation of proton-antiproton pairs (similarly for neutrons-antineutrons) There was very small excess of matter (quark and leptons) than anti-matter. Subatomic particles were formed
Particle cosmology: At 10-11seconds. The unified force broke down into electroweak, strong nuclear force and gravity. Electroweak broke down into electromagnetism and weak nuclear force (Symmetry breaking phase transitions). Photons outnumbered matter particles
Standard cosmology: At 10-6seconds. Quarks and gluons combined to form baryons such as protons and neutrons.
Big Bang Nucleosynthesis At 1 second. Form the nuclei of light elements deuterium, helium and lithium. The energy density of the universe was dominated by photons (and neutrinos).
Neutrinos decoupled from matter. At 2 seconds. Cosmic neutrino background.
Subatomic particles continued to combine. At 100 seconds. Temperature 109 degrees Kelvin. 75% hydrogen nuclei and 24% helium nuclei and 1% light elements like lithium. electrons collided with positrons, creating more photons. Most electrons and positrons annihilated, transferring their heat and entropy to photons, and thus increasing the temperature of the photons.
The density of the matter distribution matched the density of radiation. At 56,000 years. Temperature 9,000 degrees kelvin.
Universe became transparent. Protons and electrons form neutral hydrogen atoms (recombination). At 380,000 years. Temperature 3,000 degrees kelvin. The radiation decoupled from matter. Cosmic microwave background radiation
Small gravitational fluctuations caused particles of matter to cluster together.
Gravity caused gases to collapse into dense and hot stars. At 100 to 200 million years aster the big bang.
Formation of stars and galaxies. 300 million years after the big bang. Stars (like supernovae) exploded and ejected all the heavier elements we find in nature.
Galaxies formed clusters.
Around some stars gravity form planets
Solar system formed around 4.6 x 109 years ago.
And maybe life evolved
    Dark Energy
  • It Affects Universe by Accelerating the rate of expasion
  • Explanation:
    "Cosmological constant" Property of space
    "virtual particles" that continually form and disappear
    "Quintessence" New kind of dynamical energy fluid or field
    Einstein's theory of gravity is not correct
70%
    Dark Matter
  • It Affects Universe by their gravitational effects
  • Explanation:
    • MACHOs(MAssive Compact Halo Objects) Cold dark matter
      black holes far from the remnant cloud of gas
      neutron stars far from the remnant cloud of gas
      white dwarfs
      very faint stars
      brown dwarfs
      planets
    • WIMPs (Weakly Interacting Massive Particles) Cold dark non-baryonic matter
      neutrinos hot dark matter
      sterile neutrinos warm dark matter
      axions cold dark matter
      gravitinos warm dark matter
      axinos
      neutralinos
25%
    Normal Matter
  • Free Hydrogen and Helium 4%
  • Stars 0.5%
  • Neutrinos 0.3%
  • Heavy Elements 0.03%
5%

Active galactic nuclei (AGN)

Structure:
Supermassive black hole
Accretion disk
Broad line Region
Narrow Line Region
Torus (neutral gas and dust)
Jet
central engine: accretion of matter onto a supermassive black hole.

Evolution of stars

Giant Molecular Cloud of gas and dust --> Protostar --> Blue Supergiant --> Supernova
Giant Molecular Cloud of gas and dust --> Protostar --> Blue Supergiant --> Black hole
Giant Molecular Cloud of gas and dust --> Protostar --> Blue Supergiant --> Type II Supernova --> Black Hole
Giant Molecular Cloud of gas and dust --> Protostar --> Blue Supergiant --> Red Giant --> Blue giant --> Type II Supernova --> Neutron star
Giant Molecular Cloud of gas and dust --> Protostar --> Blue Supergiant --> Red Giant --> Type II Supernova --> Neutron star
Giant Molecular Cloud of gas and dust --> Protostar --> Sun-like star --> Red Giant --> Planetary Nebula --> White Dwarf + Red Giant --> Type IA Supernova
Giant Molecular Cloud of gas and dust --> Protostar --> Sun-like star --> Red Giant --> Planetary Nebula --> White Dwarf
Giant Molecular Cloud of gas and dust --> Protostar --> Red Dwarf --> White Dwarf
Giant Molecular Cloud of gas and dust --> Protostar --> Brown Dwarf

Stellar evolutionary tracks
60 solar masses: WR (Wolf-Rayet star) --> MS (Main Sequence) --> BSG (Blue SuperGiant) --> LBV (Luminous Blue Variable)
15 solar masses: MS (Main Sequence) --> BSG (Blue SuperGiant) -->YSG (Yellow SuperGiant) --> RSG (Red superGiant)
2 solar masses: MS (Main Sequence) --> SubG (SubGiant) --> RC (Red Clump) --> RG (Red Giant) --> AGB (Asymptotic Giant Branch)
0.4 solar masses: MS (Main Sequence) --> SubG (SubGiant) --> RG (Red Giant)

1 solar mass: MS (Main Sequence) --> SubGiant (Inert helium core + hydrogen-burning shell) --> Helium burning star (helium burning core + hydrogen-burning shell) --> Double shell-burning core ( Inert carbon core + helium-burning shell + hydrogen-burning shell) --> Planetary nebula --> White Dwarf --> Black Dwarf

White Dwarf

Nova
The white dwarf's strong gravitational pull draws gas and other matter from the nearby star.
Gas and matter accumulate and are heated on the white dwarf's surface.
The heated matter ignites and expodes, causing a bright, shell-like blast

stellar evolution
giant molecular cloud (GMC): gravitational collapse
GMC breaks into smaller pieces
protostar:

Sun
Spectral Class: G2V

Convective zone (70%-100% of diameter)
Radiative zone (25%-70% of diameter)
Hydrogen fusion core (0%-25% od diameter)

Solar apex (direction of the Sun's galactic motion): towards the star Vega. Speed: 16.5 Km/s

List of nearest stars
Proxima Centauri: 4.24 ly, α Centauri A, α Centauri B
Barnard's Star: 5.96 ly
Wolf 359
Lalande 21185
Sirius A: 8.58 ly, Sirius B
Luyten 726-8 A, Luyten 726-8 B
Ross 154
Ross 248
ε Eridani: 10.52 ly
Lacaille 9352
Ross 128
EZ Aquarii A, EZ Aquarii B, EZ Aquarii C
Procyon A: 11.40 ly, Procyon B
61 Cygni A: 11.40 ly, 61 Cygni B
Struve 2398 A, Struve 2398 B
Groombridge 34 A, Groombridge 34 B
ε Indi A, Epsilon Indi Ba, Epsilon Indi Bb
DX Cancri
τ Ceti
GJ 1061
YZ Ceti
Luyten's Star
Teegarden's star
SCR 1845-6357 A, SCR 1845-6357 B
Kapteyn's Star: 12.77 ly
Lacaille 8760
Kruger 60 A, Kruger 60 B
DEN 1048-3956
Ross 614A, Ross 614B
Gl 628
Van Maanen's star: 14.06 ly
Gl 1
Wolf 424 A, Wolf 424 B
TZ Arietis
Gl 687
LHS 292
Gl 674
GJ 1245 A, GJ 1245 B, GJ 1245 C
GJ 440
GJ 1002
Gliese 876
LHS 288
GJ 412 A, GJ 412 B
Groombridge 1618: 15.84 ly
GJ 388
GJ 832
LP 944-020
DEN 0255-4700
GJ 682: 16.33 ly

Evolution of Sun
Main Sequence: Star burning H in Core, Pressure = Gravity.
Runs out of H in Core. H fusion in shell around Core. Pressure > Gravity. Size increases (expansion of outer layers and core collapse).
Red Giant. Helium fusion in Core. Pressure = Gravity.

Stellar classification
mnemonic: Oh, be a fine girl / guy, kiss me
O,B,A,F,G,K,M, star classes
0,1,2,3,4,5,6,7,8,9, tenths of the range between two star classes

luminosity class

lifespan of a star

mass-2.5 x 1010 years
mass: lifespan of the star: years millions years

nucleosynthesis

primordial nucleosynthesis

1H (proton), 21H (deuterium), 31H (tritium)

32He, 42He (α particle)

63Li, 73Li

74Be, 84Be

p-p chain for lithium(starts at 2.5 million kelvin)

1H (proton) + 63Li --> 73Li

1H (proton) + 73Li --> 84Be

84Be --> 42He (α particle)

Brown stars

p-p chain(starts at 4 million kelvin)
1H (proton) + 1H (proton) --> 21H (deuterium) + e+ (positron) + νe (electron neutrino)

e- (electron) + e+ (positron) --> 2 γ

21H (deuterium) + 1H (proton)-->32He + γ

p-p I chain (10 to 14 million kelvin)

32He + 32He --> 42He (α particle) + 2 1H (proton)

p-p II chain (14 to 23 million kelvin)

32He + 42He --> 74Be + γ

74Be + e- (electron) --> 73Li + νe (electron neutrino)

73Li + 1H (proton) --> 2 42He (α particle)

p-p III chain (more than 23 million kelvin)

32He + 42He --> 74Be + γ

74Be + 1H (proton) --> 85B + γ

85B --> 84Be + e- (electron) + νe (electron neutrino) + γ

84Be --> 2 42He (α particle)

p-p IV chain or Hep

32He + 1H (proton) --> 42He (α particle) + e- (electron) + νe (electron neutrino)

p-e-p reaction

1H (proton) + e- (electron) --> 21H (deuterium) + νe (electron neutrino)

CNO-I cycle(starts at 13 million kelvin)
126C + 1H (proton) --> 137N + γ

137N --> 136C + e + (positron) + νe (electron neutrino)

136C + 1H (proton) -->147N + γ

147N + 1H (proton) --> 158O + γ

158O --> 157N + e + (positron) + νe(electron neutrino)

157N + 1H (proton) --> 126C + 42He (α particle)

Carbon, nitrogen and oxygen as a catalyst

CNO-II cycle
157N + 1H (proton) --> 168O + γ

168O + 1H (proton) --> 179F + γ

179F --> 178O + e + (positron) + νe (electron neutrino)

178O + 1H (proton) --> 147N + 42He (α particle)

147N + 1H (proton) --> 158O + γ

158O --> 157N + e + (positron) + νe (electron neutrino)

OF cycle
178O + 1H (proton) --> 189F + γ

189F --> 188O + e + (positron) + νe (electron neutrino)

188O + 1H (proton) --> 199F + γ

199F + 1H (proton) --> 168O + 42He (α particle)

168O + 1H (proton) --> 179F + γ

179F --> 178O + e + (positron) + νe (electron neutrino)

Triple-α process(starts at 100 million kelvin)
42He (α particle) + 42He (α particle) --> 84Be

84Be + 42He (α particle) --> 126C + γ

α process(starts at 600 million kelvin)
126C + 42He (α particle) --> 168O + γ

168O + 42He (α particle) --> 2010Ne + γ

2010Ne + 42He (α particle) --> 2412Mg + γ

2412Mg + 42He (α particle) --> 2814Si

Carbon burning process(starts at 600 million kelvin)
126C + 126C --> 2010Ne + 42He (α particle)

126C + 126C --> 2311Na + 1H (proton)

126C + 126C --> 2312Mg + n (neutron)

126C + 126C --> 2412Mg + γ

126C + 126C --> 168O + 2 42He (α particle)

Neon burning process(starts at 1200 million kelvin)
2010Ne + γ --> 168O + 42He (α particle)

2010Ne + 42He (α particle) --> 2412Mg + γ

2010Ne + n (neutron) --> 2110Ne + γ

2110Ne + 42He (α particle) --> 2412Mg + n (neutron)

Oxygen burning process(starts at 1500 million kelvin)
168O + 168O --> 2814Si + 42He (α particle)

168O + 168O --> 3115P + 1H (proton)

168O + 168O --> 3116S + n (neutron)

168O + 168O --> 3014Si + 2 1H (proton)

168O + 168O --> 3015P + 21H (deuterium)

168O + 168O --> 3216S + γ

168O + 168O --> 2412Mg + 42He (α particle)

Silicon burning process(starts at 2 700 to 3 500 million kelvin)
2814Si + 42He (α particle) --> 3216S

3216S + 42He (α particle) --> 3618Ar

3618Ar + 42He (α particle) --> 4020Ca

4020Ca + 42He (α particle) --> 4422Ti

4422Ti + 42He (α particle) --> 4824Cr

4824Cr + 42He (α particle) --> 5226Fe

5226Fe + 42He (α particle) --> 5628Ni

Location in the Universe

The Milky Way

Supernovae